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ABSTRACT

Coverslide materials consisting of Corning 7940 fused silica, multi-layers
of titanium and manganese oxides (blue reflector), and indium oxide (conduc-
tive-coating) were exposed to 16 UVSC up to 800 EUVSH in vacuum. Slight
changes in optical transmittance and optical absorptance were found in the (200~
360) mu regions of the fused silica and conductive coating respectively. Ex-
posure to 4 KeV protons and 4.5 KeV electrons in vacuum, produced decreases
of several percent in transmittance, (200-360) mu region in the fused silicas
after total fluxes = 10!4 particles/cm? . Sheet resistance of the conductive
coating increased above 1.0 k /square after a total flux 2 104 particles/cm?2.

Solar cells with coverglasses utilizing the indium oxide conductive coating
were exposed to 1 Mev electrons and 1 Mev protons in air and in vacuum. Total
fluxes ranged from 10''particles/cm? to 10!5 particle/cm?. There was no ap-
preciable degradation in the resistance of the conductive coating during or after
these tests.
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ULTRAVIOLET AND CHARGED PARTICLE
IRRADIATION OF PROPOSED SOLAR CELL
COVERSLIDE MATERIALS AND CONDUCTIVE
COATINGS FOR THE HELIOS SPACECRAFT

I. Introduction

In essence this was a testing or scoping study of the solar cell coverslide
materialk resistance to ultraviolet and charged particle radiation seen by the
Helios spacecraft.

The Helios project is a joint U.S.-West German effort to put a satellite in
an eccentric solar orbit which will approach to within 0.3 A.U. of the sun. The
first launch is tentatively scheduled for mid 1974. The package is composed of
seven German and three U.S. experiments. Some of the experimental objectives
are: Measurement of the solar wind velocity, mapping of the interplanetary
magnetic field, measurement of plasma and radio waves, and determining the
masses and energies of interplanetary dust.

The spacecraft is essentially spool-shaped, with the experiments and elec-
tronics housed in the middle cylindrical section. Due to the proximity of the
spacecraft to the sun, charge buildup on an essentially non-conductive surface
would cause electric fields outside the spacecraft, which would severely affect the
sensitive instrumentation on board. It is therefore essential that the spacecraft
have an equipotential or conducting surface. Indium oxide was chosen as a suitable
coating for the outer surfaces of the solar cell coverslides in that it allows
good transmittance and also suitable conductance to match the rest of the
spacecraft's metallic skin. It remained to test the materials resistance to
radiation comparable to that seen in the spacecraft's orbit, which led to the
test plan that follows.

II. Test Description

The irradiation of the coverslides and solar cells/cover slides was divided
into three phases:

1. A scoping study to give preliminary results and therefore indications of
the scope of the materials resistance to ultraviolet, low energy and high
energy charged particle irradiation.



2. Extension of (1) to include higher energy particles (200-300) KeV, with
the same total fluxes, and also to determine temperature effects.

3. To determine specific values of energy, total flux of the predominant
degradation species, along with an array of temperatures to obtain some
correlation of energy, total flux and temperature on the degradation of
the material.

Phases (2) and (3), it can be seen were dependent on the results of (1) which is
the subject of this report.

Measurements and Samples

The following parameters were measured before and after irradiation. The
instrument and its accuracy is also given.

e U.T Optical Transmittance (0.2 - 3.4)» Beckman Model DK~-1A spectro-
photometer, £2.0%

® % a,Optical Absorptance (0.2 - 2.5),. Beckman Model DK-2A spectro-
photometer and integrating sphere, £2.0%

e ¢ , Normal emittance, Gier-Dunkle emissometer, £4.0%
e R _, Sheet Resistance, Cambridge Four Point Probe, +2.0%.

e Resistance of the coating on the solar cell/coverglass module, General
Radio Resistance Bridge, Model GR 1650 A, +1%

The above measurements took several days to complete after each irradiation.

A number of coverslide samples were obtained from Optical Coatings
Laboratory, Inc., Santa Rosa, California. The samples were all the same size,
25.4 mm by 21.5 mm and about 0.15 mm thick. The coverslides were divided
into three groups.

1. Type A consisting only of the Corning 7940 fused silica substrate.
2. Type B consisting of the Corning 7940 substrate with a blue reflector

coating on one side. The coating consists of multi-layers of titanium
and manganese oxides to a thickness of about 8000 A°,



3. Type C consisting of the Corning 7940 substrate with the blue reflector
coating (8000 A°) on the backside and the conductive coating (indium
oxide, 1000 A° thick) on the front side.

AEG Telefunken supplied a solar cell/coverglass module. This module
consisted of two strings of six cover glasses and two strings of six solar cells/
cover glasses, all with a conductive coating., Each string was connected in
series. The cover glasses with conductive coating were supplied to AEG Tele-
funken by OCLI and bounded to the solar cell by AEG.

Ultraviolet Irradiation and Results

The ultraviolet exposure was carried out in vacuum using a General Electric
A H-6 mercury arc lamp. The lamp was positioned to supply 16 ultraviolet
solar constants. The eéxposure was run for several days to obtain a total of 800
Equivalent Ultraviolet Sun Hours (EUVSH). Temperature of the sample holder
was monitored throughout the test and was found to be 145°C +£10%. - This is
well below the critical 180°C specified by OCLI as causing possible degradation
of the indium oxide coating. Figures 1-12 give the percentage transmittance vs.
wavelength, while figures 13-24 give percentage transmittance vs. wavelength
plus reflectance, from which absorptance is obtained, (1 - T + R = A).

The type B and C samples did not transmit at all in the near ultraviolet
region (200-360) mu, due to the blue reflector coating on both these types which
cuts~-off at ~415m. See figure 5. This is a transmittance curve for Type B, Type
C is similar. A decrease of several percent in transmittance was observed in
the near ultraviolet region for Type A samples. See Figure 7. This was found
comparable to that observed for Corning 7940 in recent studies of Optical
Materials for the Earth Radiation Budget aboard NIMBUS (Reference 1),

A decrease of several percent in absorptance was noted for Type B from
(200 to 360) m 1. See Figure 16. Type C exhibited an increase in absorptance
over the same region as seen in Figure 22.

Type A material, fused silica, shows an increase in absorptance over the
same region, although to a lesser extent. See Figure 19. Comparing Figures
16 and 22, some absorptance can be attributed to the conductive coating. No
significant changes were observed for absorptance in the visible and near
infra-red regions. :

Normal emittance measurements at room temperature showed no changes
from the initial values which were: Type A 0.80, Type B 0.79, Type C 0.79.



Sheet resistance for the Type C samples decreased slightly from about
0.9 kQ/square to about 0.8 k1/square.

Scanning electron microscope studies of the samples at 400 X, 2000 X,
and 4000 X showed no changes.

Charged Particle Irradiation of Individual Coverglasses and Results

The second part of this scoping phase involved charged particle irradiation
at low energies. Specifically these were 4.0 KeV protons and 4.5 KeV electrons
to fluences of 10'%, 10**, and 10'® particles/cm?. All samples were exposed
in vacuum at approximately 107° torr. A 300 KeV Texas Nuclear accelerator
was used for the two lower fluences, and an ORTEC RF source supplied the

. ge 16 . 2
radiation for the 10 = particle/cm” run.

As in the case of the ultraviolet tests, the same before and after measure~
ments were made. Figures 25-66 give percent transmittance, and figures 67-95
give % (transmittance + reflectance). No significlaglt losses in transmittance
occurred except for the Type A samples after 10 electrons/cm? at 4.5 KeV.
(See Figure 64.)

No changes at all were observed in the normal emittance and absorptance
measurements,

In the sheet resistance, changes did occur. Table 1 gives the values before
and after radiation.

Table 1
4 KeV Protons 4.5 KeV Electrons
d particles/cm? 1012 1014 101 1012 10'? 1016
R, k(/square
initial 0.9 1.0 0.8 0.8 1.0 1.0
R, k{/square
after 1.1 1.2 1.3 1.0 1.7 3.6

Note that a large jump in the sheet resistance occurs due to the 10'°
electrons/cm? exposure. The value of 3.6 k{}/square is still well under the
20 kQ/square limitation placed on the indium oxide coating.



Charged Particle Irradiation of AEG Telefunken Module (Solar
Cell/Coverglass/Conductive Coating) and Results

Two strings, one with solar cells and cover glasses and one with cover.
glasses only, were shielded and used as a control. The other two strings were
irradiated under the following conditions:

1, 1 MeV electrons in air, 10! e/cm?® to 10!* e¢/cm? Sample removed
from machine for each resistance measurement.

2. 1 MeV protons in vacuum, 10"} p/cm2 to 10'° p/cm2. ‘Samples removed
from machine for each resistance measurement. .

2 5 2
3. 1 MeV electrons in vacuum, 10 2 e/em’ to 10" e/em’. Samples re-
moved from machine for each resistance measurement.

4. 1 MeV electrons in vacuum, 10'! e/cm2 to 10 e/cm2. Resistance
measured simultaneously with irradiation.

5. 1MeV protons in vacuum, 10 H p/cm2 to 1015 p/cm 2. Resistance meas-
ured simultaneously with irradiation.

Tables 2 and 3 give a summary of the data obtained before and during the irradi-
ation, Figures 96,97 and 98 show plots of the data against particles/cm?. There
was no appreciable degradation of the conductive coating during or after any of
the tests.

III. Summary and Conclusions

Table 4 gives a summary of changes that occurred due to the ultraviolet
and charged particle irradiations. :

Essentially no significant changes occur due to radiation which would pro-
hibit use of the conductive coating, blue reflector and Corning 7940 fused silica
substrate combined to form a suitable solar cell coverslip. The increase in
sheet resistance due to the charged particle irradiation appears to be dependent
on the fluence acquired. A high enough accumulation of charged particle radia-
tion produces enough defect structure in the coating to cause resistivity changes.
From comparison calculations for germanium taken from tables (Reference 2),
the electrons most probably penetrate the conductive coating while the protons
do not. Even though all their energy is not expended in the conductive coating,
the electrons account for a somewhat greater change in the sheet resistance
than do the protons.



Table 2

AFG Telefunken Conductive Coating Irradiation Test

1 MeV EKlectrons in Air - 10/6/71 - 10/7/71

Resistance in K

String Initial | 10" e/cm® | 10'% e/ecm?[ 10" e/ecm?| 10" e/ecm 2| * | ** | 10*® e/em?| * | **
A 11.8 12.2 12.3 12.4 12.0 11.8| 11.9 11.2 10.9{10.8
B 8.7 8.9 9.1 9.4 9.2 9.2 9.2 9.2 8.8 8.8
C (control)| 12.8 12.8 12.8 12.8 12.5 12.5(12.5 12.6 12.6112.7
D (control)| 8.3 8.3 8.3 8.3 8.3 8.3| 8.3 8.2 8.2| 8.2
1 MeV Protons in Vacuum - 11/19/71
A 11.5 10.2 10.0 10.2 10.2 11.0
B 8.2 7.4 7.1 7.1 6.8 8.3
C (control)| 12.4 11.1 10.8 10.7 10.4 12.5
D (control) 8.2 7.4 7.1 7.1 6.8 7.4
1 MeV Electrons in Vacuum - 11/22/71
A 11.0 10.1 10.3 10.4 10.4
B 8.3 8.6 8.6 8.5 8.3
C (control)| 12.5 12.3 12.1 12.0 11.8
D (control) 7.4 8.1 8.1 8.0 7.6

*2 hours after exposure .
**16 hours after exposure




Table 3
AEG Telefunken Conductive Coating Irradiation Test

Resistance in K (0 -

1 MeV Electrons in Vacuum, Simultaneous Measurement

(12/21/71)
strine | mitial 1.4x10™ | 2.7x10 | 4x10™ | 5.4x10"* | 6.7x10"* | 8x10™* | 9.5x10'* | 1x10*° 10 o/cm?
ring | e/cm? e/cm? | e/cm?| e/em? | efcm? | e/cm?| e/ecm? | e/cm? ¢
A 11.4 11.6 11.6 11.6 11.7 11.7 11.5 11.6 11.6 11.4
B 9.2 9.6 9.6 9.6 9.7 9.7 9.7 9.7 9.6 9.2
C 13.6 13.6 13.6 13.6 13.6 13.5 13.4 13.4 13.4 13.6
D 8.7 8.7 8.7 8.6 8.6 8.5 8.5 8.5 8.5 8.7
(110 minutes to reach 1x10'° e/cm?)
1 MeV Protons in Vacuum Simultaneous Measurement
(2/25/72)
String | Initial | 10'2 p/ecm? | 10'* p/ecm? | 10'* p/em? 2.5x10'% | 5x10™ | 7.5x10 1015 p/cm?2
p/cm? p/cm? p/cm?
A 10.5 10.5 10.4 10.4 10.4 10.3 10.3 10.4
B 8.2 8.2 8.0 7.9 7.9 7.9 7.9 7.9
C 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8
D 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1

(167 minutes to reach 1x10!° p/cm?)




Table 4

coating

U.V. Protons Electrons
Measurements =
800 EVVSH 10'? p/cm? 10" p/cm? 10'° p/c.m2 10'? e/cm?| 10'* e/cm? 10'® e/cm?

9T Decrease in Slight decrease | Slight decrease | Slight decrease | No change |Slight decrease | Decrease in

fused silica in fused silica |in fused silica |in fused silica in fused silica | fused silica

(200-360) my: | (200-360) m;+ | (200-360) my: | (200-360) m: (200-360) my | (200-360) mp
% a Slight increase | No change No change No change No change |No change No change

in conductive

coating -

(200-360) m
" No change No change No change No change No change |No change No change
R Slight decrease | Slight increase | Slight increase |{Increase in Slight in- |Increase in Increase in

in conductive in conductive in conductive conductive crease in |conductive conductive

coating coating coating coating conductive | coating coating




Due to the favorable results obtained in this first Phase of the coverslip
and module tests, phases two and three will not have to be considered.
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B AFTER IRRAD.
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— —— — |NITIAL
10 ——AFTER IRRAD.
oL_1 | | |
200 250 300 360
A (mp)

Figure 58.

68



69

- 100

90L.______ I Jes—— i —pegnege T T T e e e e ————— S
80{
70 |-
60 |
’-—
® 50
sl \
30 |-
SAMPLE S (clear f.s.)
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RESISTANCE KQ

O STRING A COVER GLASS ONLY
O STRING B COVER GLASS OVER SOLAR CELLS

O STRING C COVER GLASS ONLY - SHIELDED, CONTROL

& STRING D COVER GLASS OVER SOLAR CELLS - SHIELDED, CONTROL

1 Mev ELECTRONS IN AR

ﬁL o

16 HR. LATER

2ZHR.LATER 5 o LATER

— 16 HR. LATER
__g-—————-"‘"’/e B g
. Y
b —O— 2 HR, LATER
y Ol A N N 16 HR, LATER
B 2 HR. LATEV
B 16 HR. LATER
I I | I
101 1012 1013 10 101°

e/cm2 TOTAL FLUENCE

Figure 96.
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RESISTANCE Kf£2

O STRING A COVER GLASS ONLY

O STRING B COVER GLASS OVER SOLAR CELLS

O STRING C COVER GLASS ONLY - SHIELDED, CONTROL

& STRING D COVER GLASS OVER SOLAR CELLS - SHIELDED, CONTROL

——— 1 Mev ELECTRONS IN VACUUM
—-——— 1 Mev PROTONS IN VACUUM

—
£

o

101 1012 10'3

e/cm? TOTAL FLUENCE

Figure 97.
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RESISTANCE K

SIMULTANEOUS IRRADIATION/MEASUREMENT

STRING A COVER GLASS ONLY

STRING B COVER GLASS/SOLAR CELL

STRING C COVER GLASS ONLY - SHIELDED/CONTROL
STRING D COVER GLASS/SOLAR CELL - SHIELDED/CONTROL

boobo

——— 1 Mev- ELECTRONS IN VACUUM
——— 1 Mev PROTONS IN VACUUM

©

10l 10'2 1013

TOTAL FLUENCE /cm?

Figure 98.
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